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Abstract A series of effective-field approximations are formulated for the Kosterlitz-Thouless 
uansition in the sineGordon model by means of the cymk"ul expansion and the variational 
method. Effective-field essential singularities - exp[En(K?' - K)-'] are obtained for the 
correlation length as frrst derived by Saito in a single approximation. However, a systematic 
variance of the effective-field critical coefficient en - 2ln(J/2ya)/(n + l)n is found when the 
order of approximation n increases. The true critical exponent i; of the Kosterlil?+Thouless 
uansition is thus revealed to be less than the effective-field exponent CO, ir c ir" = 1. from 
SuzuM's coherent-anomaly method. The phase transition in the two-dimensional XY model is 
studied from its relation to the sineGordon model. The critical exponent qe of the sp&spin 
correlation function at the criticd point is found to be qc = 1/(4 + 1/d). 

1. Introduction 

Several years ago, Suzuki proposed the coherent-anomaly method (CAM) in the field of 
critical phenomena [I]. The cm approach provides non-classical estimates of critical 
exponents from a series of systematic mean-field (w) approximations by relating the 
anomalous behavior of the w critical coefficient j , defined as 

(1) 

(2) 
Since then there has been a renewal of interest in effective-field (EF) type theory in critical 
phenomena with emphasis on the evaluation of the non-classical critical exponent. Efforts 
have been made on the construction of quickly convergent series of EF approximations and 
the CAM approach has achieved impressive successes [2 ,3 ] .  What seems to be lacking, 
however, is a study of the applicability of CAM to topological phase transitions. 

Since topological orders such as vortices in the two-dimensional XYmodel [4,5] cannot 
be defined in a local region, an MF theory is not straightforward. The ordinary self- 
consistency formalism by the cluster-decoupling of the relevant Hamiltonian produces a 
fictitious order parameter, contrary to an analytical theorem [6] and to the results from other 
approaches [4,5,7-131. Essential singularities of the correlation length and susceptibility in 
the Kosterlitz-Thouless (KT) type transitions cannot be derived with the naive MF theory, 
either. 

A couple of attempts have been made to grasp the essence of topological phase 
transitions within an EF scheme [14,15]. Saito has constructed an EF theory for the 
roughening phase transition in a crystal-surface system in terms of the sineGordon (SG) 
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when the approximation is improved, to the true critical point and %e critical exponent y :  
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model by combining the cumulant expansion with the variational method [15,16]. He was 
able to obtain an essential singularity denoted by CO = 1 for the correlation length. This EF 
value ?o = 1 differs from the results by other approaches [4, 5, 7-13]. On the other hand, 
his estimate for the critical exponent qc = of the spin-spin correlation function at the 
critical point for the XY model coincides with the results by RG [7-101. 

Our interest is then two-fold. Firstly, we want to clarify the behaviour of Saito's EF 
theory when higher-order cumulants are taken into account. In this way we may see why the 
EF value 50 differs from the results by other approaches. Secondly, if the EF theory can be 
extended to a series of approximations, we apply the CAM analysis to derive non-classical 
estimates of critical exponents. In the present paper we perform cumulant expansion to 
higher orders and show how a coherent anomaly appears when the terms proportional to the 
small parameter yo/J or its square power in higher-order cumulants are taken into account 
D71. 

The series of EF approximations are formulated for the roughening transition in the 
crystal-surface system in section 2. Section 3 is devoted to study of the XY model. 
Discussions and summary are given in section 4. 

2. KT tramition in the crystal-surface system 

We study the sine-ciordon Hamiltonian~ for the roughening transition in the crystal-surface 
system [15, 161, 

where hi's are continuous height variables, 8 denotes unit vectors and yo is positive. The 
second term, proportional to yo, preserves the periodicity of the variables in the discrete 
Gaussian (dG) model which is shown to be equivalent to the Villain model, Coulomb gas 
model and the XY model [lo, 18,19,15]. The height-variables in the above sineGordon 
Hamiltonian correspond to the magnitudes of vortices in the XY model. In the present 
system, topological effects can be taken into account more easily. Since the positive 
parameter yo is included to restore the symmehy of the dG model, it may be treated as 
a small parameter compared with the strength of interaction J [15]. 

We evaluate the free energy of the above system by the cumulant expansion 

around the diagonalized effective Hamiltonian 

'H, = k~T/2EG- ' (g)h,h- ,  
4 

where Fe = -kgi"lnTrexp[-'If,/k~T] and (Q'), is the nth cumulant of Q under 'Ife. 
The Green function G(q) in the above~effective Hamiltonian is arbitrary, provided that the 
infinite summation is completed. It serves as a variational parameter for approximations, as 
will be seen in the following. 

Terminating the above cumulant expansion at the first order, one arrives at the following 
approximate free energy 115,161: 
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where G;'(q) N q2/K with K = kBTj2.l and &r) = 1/N &G(q)e'g'. 
In order to make the free energy (6) a good approximation to the true one of the sine- 

Gordon system, we resort to the variational method with respect to the Green function G(q) 
in (6). Then, one obtains the following equation for G(q): 

(7) kB T 
The solution to the above equation minimizes the approximate free energy (6). It is readily 
seen that the Green function should have the Omstein-Zemike form G(q) = K/(q2+c-2). 
Since 

~ ( 4 ) - 1  = c ~ ( ~ ) - '  + (2H)z-ke-k2/NEp:,C(~). 

one obtains from (7) the following equation for the correlation length t [16]: 

This equation shows a bifurcation around K, = 2/n and the critical behaviour for is 
K > Kc 

The critical exponent defined by 6 - exp[a(K, - K)-'] is CO = 1 [15,161. 
The above formalism is an tiF theory and it is successful in understanding the essential 

singularity, or exponential singularity, of the correlation length in topological phase 
transitions [ E ,  161. However, the value of critical exponent Go = 1 is different from the RG 
result C =,$ 15, 7-91 which is supported by numerical simulations [ll-131. Therefore, it is 
important to investigate what will happen when one develops the above EF theory further 
to a series of approximations and whether it is possible to derive from them a non-classical 
exponent by means of Suzuki's CAM approach. 

In order to show the difference between Saito's approximation reviewed'briefly above 
and higher-order approximations, we present calculations for the second approximation in 
some detail. 

We terminate the cumulant expansion (4) at the second order. The approximate free 
energy is then given by 

Instead of (7), we have in the present approximation the following self-consistency equation 
for the Green function G(q) from the variational method 
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As in the first approximation, the solution G(q) is also of the Omstein-Zernike form 
G(q) = x / (q2  + e-2). However, the coefficient x of the Green function cannot be put 
as K in the present case. The third term in (12) yields a difference between x and K from 
its dependence on the wavenumber q. We remember that this term is derived from the 
second cumulant. 

In order to clarify the relation between x and K ,  we bring G(q) = x / ( q 2  +e-’) into 
the above equation and put f - ’  = 0 and q << 1. In this limit we obtain from (12) 

with 

In the derivation of (13). we have neglected the difference between x and K in the third 
term of (12) since there is a prefactor of (yo/J)’ in that term and the difference only yields 
a higher-order correction. The discrepancy between x and K is then found to be 

x = K - m F  ( 1 3  
from (13). Therefore, it is clarified that the square power of the smaU parameter yo/J from 
the cumulants of orders higher than the first is necessary in order to derive the difference 
between x and K .  It should be noticed that, although this discrepancy between K and x 
is proportional to the small parameter y o / J ,  its contribution to the EF critical coefficient is 
significant since its derivative should be evaluated as shown in the following. 

By putting q = 0 and taking e-’ < 1 in (12) we obtain the self-consistency equation 
for the correlation length near the critical point 

It is the same as (9) except for the replacement of K by x .  As in the first approximation, 
the above equation bifurcates at x, = 2/x, 

I C 0  x > Xr 

The difference between x and K is once again neglected as a higher-order correction in the 
derivation of the coefficient on the right-hand side of (16). The integral 

as e-’ + 0 at x = x c  = 2/n results in the very coefficient (Zn)’yo/k~T in (16) which is 
the same as the one in (9) for the first approximation. This invariance of the coefficient in 
the equation of the correlation length excludes the logarithmic dependence of the EF critical 
coefficient on the order of approximation and makes it possible to extrapolate the order of 
approximation to iniinity, as will be revealed. 

On the other hand, the difference between x and K has been kept in the exponent in 
(17) since the derivative of this difference with respect to K is necessary in the evaluation 
of the EF critical coefficient. 

So long as the variational method is adopted, the critical exponent FO = 1 does not 
change even though the second-order cumulant is included. However, in order to explore 
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fully the improvement of the EF approximation and to investigate the possibility of deriving 
the non-classical exponent from the present BF theory, we should compare the above two 
approximations in detail, namely we should study the coherent variances of the critical point 
and the EF critical coefficient [l]. For this purpose, we rewrite the singularity (17) of the 
correlation length in terms of K. 

We first evaluate the critical point KA2! and Cz(KL2'). Noting the asymptotic formula 
for the correlation functions at the critical point where 5-l = 0 

K 
2n 

(1 - eip') = - Inr + A 

with A = (4 In 2 + y ) / a 2  and y standing for the Euler constant, we have 

from (14). By bringing (15) into (ZO), we can.determine C*(K)  in terms of x .  In particular, 
we have ,/a = [ne-(W2A/4jV3 (.I)-"' ?? (21) 

at the critical point x, = Z/n. The critical point KA21 is then determined as 

in terms of (15). 
It is interesting to notice that the discrepancy between x and K is linear with respect 

to the small pafameter y o / J  off the critical region as in (15), while it is proportional to 
( Y O / J ) ~ / ~  on the +tical point. It will be revealed that the power of yo/J  in the relation 
between xc and K ,  varies according to the order of approximation. 

We are now ready to transfer the parameter from x in (17) to K:  

with the EF critical coefficient 62: 

The derivative of C z ( K )  at the critical point with respect to K is also evaluated from 
(20) as 

It diverges as the small parameter yo/J  approaches zero. This is the origin of the anomalous 
variance of the EF critical coefficient in the present problem. 

Incorporating (21) and (25) into (24), we arrive finally at the following simple expression 
for the EF critical coefficient: 

- 2111 J j 2 y o  
3n b = 
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For comparison, we list the expressions for the critical point and t h e w  critical coefficient 
of the first approximation: 

and those of the second approximation: 

2 In J/2yo 213 

(:) 6 =  3n 
2 

KLzl N - +0.1068385 - 
x 

Therefore, the second cumulant yields the discrepancy between x and K as in (U), increases 
the Critical point and reduces the EF critical coefficient. 

In the present formalism, we can derive higher-order approximations by incorporating 
further high-order cumulants. Since the terms proportional to yo/J produce the singularity 
and the terms proportional to the square power of yo/J  yield the discrepancy between x 
and K as revealed in the above arguments, it may be enough to pick up only the terms 
proportional to yo/J and ( yo /J ) z  even in higher-order cumulants. 

Within the approximation described above, the equation relating x and K is derived as 

Ce-(~)z[e(o)-E(r)l[($(o) - ($(r )y-2(1  - &), (29) 
P 

The factor l/(n -2)! is the result of the cancellation between the factor l/n! in the cumulant 
expansion (4) and the number n!/2!(n - 2)! of different ways to choose two vertices from 
a total of n, to establish the term e~p(-(2n)~[&O) - ($@)I). 

It is obvious from (29) that an approximation denoted by odd n is equivalent to the 
first approximation, since (29) has only the solution x = K for odd n. Higher-order 
approximations are derived truncating the cumulant expansion (4) at orders of even numbers. 

With the aid of the integral 

as t-' + 0 for m p 1, we have been successful in showing that the self-consistency 
equation (16) for the correlation length remains the same within the approximation that the 
difference between x and K are neglected in the coefficient on the right-hand side of (16). 

Noting the integral 
m! 

1n"'rdr = - r-l-A 
Am+' 

we have obtained from (29) 4- (3' ~ X ~ ~ > ~ ~ ) ' A I  ) W+l) ($)(l-n)/(l+a) 

CL(Kr1) = -(n - l ) d a ( $ ) - '  

for the nth approximation with n 2 2. These relations result in the following expressions 
for the critical point K:] and the EF critical coefficient 

Cn(KP1)  = 

(32). 

for the nth approximation: 
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Therefore, the EF critical coefficient g,, decreases systematically when the order of 
approximation n increases as seen in the second equation in (33). 

Since gn is defined by 

the decreasing tendency of in suggests that the EF singul%ity is stronger than the true one. 
A systematic variance of the EF critical coefficient is related quantitatively to the true critical 
point K; and the true exponent G in the CAM scheme by 

in N A(K,' - Kp])-"k (35) 

as reviewed briefly in section 1. Therefore, we are able to conclude -F + GO > 0, namely 

; < I .  (35) 

Suppose that the expressions for KFl and Gn in (33) are valid even for large value of 
This result is consistent with t N f by other methods [4, 5,  7-13]. 

n. Putting them into (35) and taking the l i t  n 4 00, we arrive at 

and the amplitude A = k 2 . ~ A s  i o  = 1, the conclusion is as follows: G = 0, namely the 
essential singularity vanishes. 

We notice, however, that in the present EF approximations we have treated only the 
terms proportional to yo/J  and (yO/J)*.  The expressions for K F ]  and ia in (33) hold 
only up to a moderately large value of n of order of J / y o ,  since terms proportional to yo" 
with m > 2 have been omitted, which may show an n-dependence of n-' with U smaller 
than unity. Thus, in order to make conclusive estimation of the true critical exponent for 
the present topological phase transition by the CAM approach, terms propomonal to higher 
powers of y o / J  in the cumulant expansion may be necessary. The improvement in this 
direction is beyond the content of the present paper and will be reported elsewhere. 

3. KT transition in the XY model 

The phase transition in the two-dimensional classical XY model 

is related to that in the crystal-surface system discussed in the preceding section 
[7,10,18,16]. It is found by JosB et al 171 and Itzykson and DrouEe [IO] that the 
spin-spin correlation function '(S(rl)S(rz))xu in the XY model can be evaluated by the 
thermodynamic average of a set of variables (vi} defined in the dG system along a path from 
point T ,  to point r z :  qi = +l/-1 if i site is a leftlright neighbour of a site on the path and 
qi = 0 otherwise. For simplicity, the path is chosen as the straight cut from T I  to ~ 2 .  With 
this definition we have approximately [7,16] 
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where the thermodynamic average on the right-hand side is over the Hamiltonian (3) with 
K = kBT f 2 J  = J x y / k B T x y .  By rewriting the above equation into the following equivalent 
form: 

where the thermodynamic averages on the right-hand side are under Hamiltonian (5), we 
find that the correlation function can be evaluated by the following modified cumulant 
expansion: 

with [AeB], = (AeB)/(eB), [(AeB)2]. = (A2eB)/(eB) - (AeB)2/(eB)2, [(AeB)3], = 
(A3eB)/(eB) - 3(A2eB)(AeB)/(eB)2 + 2(Aea)3/(eB)3, etc. The transformation (40) for 
the correlation function makes it easier to construct approximations corresponding to those. 
established in the preceding section and to use those results. 

For simplicity, we concentrate OUT attention on the low-temperature phase of the XY 
model, since it corresponds to the rough phase of the sine-Gordon system where 6-l = 0. 
With some algebra one finds that the contribution from the nth cumulant for n 2 2 is simply 

We then derive from (40) 

by omitting the higher orders of the difference between x and K in (42) for n 2 2. 
As far as the long-distance behaviour is concerned we have [7,16] 

c[V: - n ; l w k  - - . T d h f  - 772, 
k.1 

N - 11 d?-kdT,[Af?(Tk - T I )  - $G(T, -?-[)I 

N - 11 d q  ds‘&(rk - r[) + 2[6(rI - rz) - &O)l 

N - ss d q  drd-KS(rk - 71) + t-’8(rfi -TI)] + 2 [ 6 ( r 1  - rz) - C(0)l. 

(44) 

Thus, in the nth approximation the correlation function in the XY model assumes the 
following distance dependence at the corresponding critical point @ “ I :  

Inr r >> 1 
1 

In(exp[i(& -&)])XU = -- 
2nKF1 (45) 
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where (19) is used. The square power of the difference between x and K has been 
neglected in the derivation of (45) from (43). Since there is no anomalous correction 
to the asymptotic formula (45) at all, the limit of the order of approximation n + 00 can be 
taken straightforwardly in the present case. Therefore, we arrive at the spin-spin correlation 
function 

( S ( T I ) S ( m X Y  - In - TzI-qc (46) 
with 

1 1 - 
qc = 2rrK,* - 4 +  1/n= (47) 

for the XY model by incorporating KE; in (37) into (45). Our estimate of the critical exponent 
qc is near to the RG value qc = 4 with a relative difference about 2.5%. The estimate made 
by Saito 1161 from the first approximation is f c  = 4. 

It is readily seen that, for temperature 0 < TXY < J x u / k B K z ,  the correlation function 
shows a power-law decay with respect to the disrance. Thus, the present EF theory predicts 
correctly the absence of order parameter in the XY model [16]. 

Calculations have been carried out in the high-temperature phase in the higher-order 
approximations and we have found that the correlation length in the XY model t~ has the 
same singularity as that for the sinffiordon system and we have obtained the following 
expression for the magnetic susceptibility: 

~ 

for K 2 KE; 
for K < K; x - 

a result similar to that by Saito in terms of the first approximation 1161. The above critical 
behaviour is of course consistent with the results for the low-temperature phase. 

4. Summary and discussion 

We have studied Kosterliw-Thouless-type transitions by means of a series of self-consistency 
approximations and Suzuki’s coherent-anomaly method. We derive EF approximations by 
truncating the cumulant expansion of the free energy at successively higher orders and by 
the variational method. Although the variational principle cannot be proven generally, the 
present series of approximations are useful in the study of the true behaviour of the systems 
since higher-order cumulants are included one by one. The EF approximations yield the 
same essential singularity denoted by 50 = 1 for the correlation length as first derived by 
Saito. However, we have discovered a systematic decrease in the EF critical coefficient 

when the order of approximation increases. The origin of this coherent variance is the 
discrepancy between the coefficient of the variational Green function and the temperature, 
which comes from the second- and higher-order cumulants. Therefore, it is shown that 
besides the terms proportional to the small parameter y o / J ,  which yield the phase transition 
and the EF essential singularity, the terms proportional to the square power of y o / J  are also 
of significant importance for the critical behaviour. The observed decrease in the EF critical 
coefficient implies that the true critical exponent is less than unity, c < I, even within the 
scheme of EF theory. Terms proportional to higher powers of y0 fJ  may be necessary in 
order to derive numerical estimate for the true critical exponent S. 

We have also investigated the critical phenomena of the two-dimensional XY model 
by using its relation with the sinsGordon model. We have obtained an estimate qc = 
1/(4 + l /n2)  for the exponent of the spin-spin correlation function at the critical point. 
This value is close to the RG value qc = with a relative difference about 2.5%. 
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The present approach is of theoretical importance for the study of topological phase 
transitions since an EF essential singularity is derived analytically and the investigation of 
the true singularity has been reduced to the discussion of the possible coherent anomaly 
in the argument of the exponential. Therefore, the ambiguity encountered in analyses of 
Monte Carlo data for finite-size systems in drawing a distinction between the power-law 
singularity and the exponential singularity is excluded. 

As discussed by Saito, the present EF theory derives an exponential singularity only in 
two dimensions. Generally, an effective-field theory derived from the cumulant expansion 
and the variational method is important since it is able to provide the dependence of 
critical phenomena on the dimensionality of space. This aspect is also observed when 
this formulation is applied to the S4 model. The results for the critical exponents in S4 
model are as following. There is no phase transition at all in dimensions lower than dl = 2; 
in three dimensions we have a power-law singularity of the correlation length denoted by 
uo = 1 accompanied by a divergent critical coefficient; for dimensions higher than du = 4, 
U = 1 with convergent critical coefficients. These results correspond to the fact that the 
lower and upper critical dimensions for the S4 model are 6 = 2 and d. = 4, respectively 
[20,21]. 

A further study taking into account the terms proportional to higher powers of yo/ J in 
the cumulant expansion for the KT transitions is now in progress. The detailed analysis and 
the CAM estimations of the critical point and the critical exponents will be reported in the 
near future. 
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